Quá trình nhân đôi (sao chép, tái bản) DNA Lục_lạp

Mô hình điển hình của quá trình nhân đôi cpDNA

Quá trình nhân đôi DNA lục lạp sử dụng nhiều cơ chế thòng lọng D (D-loop). Sơ đồ này được phỏng theo Hình minh họa 11 trong cuốn "A comparative approach to elucidate chloroplast genome replication." của Krishnan NM và Rao BJ.

Cơ chế của quá trình nhân đôi DNA lục lạp chưa được xác định một cách thuyết phục, nhưng có hai mô hình chính đã đề xuất (đề mục này đang nói về Mô hình điển hình nhất trong đó). Các nhà khoa học đã cố gắng quan sát quá trình phân đôi (trực phân) lục lạp qua kính hiển vi điện tử từ những năm 1970.[58][59] Kết quả của những thí nghiệm này đưa đến ý tưởng rằng DNA lục lạp nhân đôi bằng cách sử dụng một cấu trúc gọi là thòng lọng (tạo bởi) mạch kép tách nhau hay thòng lọng D, vòng D (double displacement loop (D-loop)). Khi thòng lọng D mở rộng dọc theo vòng DNA (tháo xoắn và tách mạch dần chuỗi DNA), nó sẽ hình thành nên dạng cấu trúc trung gian theta (θ), còn biết đến với cái tên cấu trúc trung gian Cairns và hoàn thành việc nhân đôi sau khi bổ sung xong các nucleotide dọc theo hai mạch gốc DNA.[58][60] Sự sao chép bắt đầu từ những điểm gốc xác định. Tại đó, nhiều chạc tái bản dần xuất hiện, cho phép bộ máy nhân đôi tiến hành sao chép DNA. Tiếp theo, các chạc tái bản liên tiếp mở rộng và cuối cùng thông hết với nhau. Hai vòng xoắn kép cpDNA gồm các mạch mới tổng hợp tách ra và hoàn thiện dần để hình thành nên các nhiễm sắc thể cpDNA sau này.

Bên cạnh những minh chứng từ những thí nghiệm hiển vi đầu tiên, mô hình này cũng được củng cố bởi một lượng quá trình khử amine hóa (deamine hóa) tìm thấy trong cpDNA[58] (vì đây là mô hình có những điều kiện thuận lợi dẫn đến quá trình trên). Khử amine hóa xảy ra khi một nhóm amino mất đi và dẫn đến hệ quả là đột biến thay thế các base. Khi adenine bị khử amine hóa, nó chuyển thể thành hypoxanthine (ký hiệu: H). Qua lần nhân đôi DNA đầu, hypoxanthine có thể bổ sung với cytosine để trở thành cặp base H–C, và sau một lần nhân đôi DNA nữa, C tiếp tục bắt đôi với G để trở thành cặp G-C (vậy là, từ một cặp base A-T lúc đầu sau đột biến khử amine đã trở thành cặp G-C, và trên cùng một mạch gốc ban đầu, base A trở thành base G thông qua trung gian H).[61]

Theo thời gian, những thay đổi trên các base DNA có thể phát sinh từ những đột biến khử amine. Khi adenine bị khử amine hóa, nó chuyển thể thành hypoxanthine, có thể bổ sung với cytosine. Trong quá trình nhân đôi, cytosine sẽ bắt cặp với guanine, gây ra kết quả thay thế base A bằng base G trên cùng một mạch gốc DNA ban đầu (mạch chữ xanh).

Quá trình khử amine hóa

Theo mô hình điển hình, trong cpDNA, có một số thuận lợi dẫn đến khuynh hướng khử amine hóa A → G. DNA dễ dàng bị khử amine hóa khi tách thành những mạch đơn tự do không liên kết với nhau. Theo tiến trình mở rộng các chạc ba tái bản, có những mạch chưa kịp sao chép vẫn còn ở trạng thái mạch đơn tự do và chúng có nguy cơ xảy ra sự khử amine hóa A → G. Vì vậy, khuynh hướng của quá trình khử amine hóa biểu hiện thông qua các sơ hở của chạc tái bản là có khả năng nhất hiện tại và định hướng này cũng được củng cố thêm khi các mạch đơn chưa kịp sao chép đó có thể giữ trạng thái tự do trong một khoảng thời gian dài.[58] Mô hình này vẫn đang là một giả thuyết hàng đầu hiện nay; tuy nhiên, một mô hình thứ hai cũng gợi ý rằng thực sự phần lớn cpDNA có dạng mạch thẳng và quá trình nhân đôi tiến hành thông qua sự tái tổ hợp tương đồng. Nó cũng cho biết chỉ có một thiểu số vật chất di truyền lưu giữ trong các nhiễm sắc thể dạng vòng, trong khi phần còn lại có thể có trong các dạng mạch thẳng, phân nhánh hay những cấu trúc phức tạp khác.[58][60]

Mô hình thay thế

Một mô hình cạnh tranh khác của quá trình nhân đôi cpDNA khẳng định rằng phần lớn cpDNA có dạng mạch thẳng và sự nhân đôi tiến hành thông qua quá trình tái tổ hợp tương đồng, tương tự thực khuẩn thể T4[60] (bacteriophage T4). Mô hình này được đề xuất dựa trên việc phát hiện một số loài thực vật có cpDNA mạch thẳng, chẳng hạn như ngô, và có thể có nhiều loài khác chứa thêm những cấu trúc di truyền phức tạp hơn mà các nhà khoa học chưa thể hiểu rõ.[60] Qua những thí nghiệm ban đầu trên cpDNA, những nhà khoa học từng chú ý đến các cấu trúc mạch thẳng này; tuy nhiên, họ cho rằng đó chỉ là hệ quả của những vòng DNA vỡ hỏng.[60] Nếu các cấu trúc di truyền phân nhánh và phức tạp tìm thấy trong những thí nghiệm trên cpDNA là sự thật và không phải là hệ quả của dạng DNA chuỗi vòng (gồm các vòng DNA nối tiếp nhau) hoặc vỡ hỏng, thì cơ chế nhân đôi sử dụng những thòng lọng D (mô hình điển hình) là không đủ để giải thích việc tạo ra những cấu trúc như trên.[60] Đồng thời, sự tái tổ hợp tương đồng cũng không mở rộng hỗ trợ cho khuynh hướng đột biến khử amine hóa A → G tìm thấy trong hệ gen lục lạp.[58] Do thất bại trong việc giải thích khuynh hướng khử amine hóa cũng như vô số các loài thực vật được chứng minh có loại DNA vòng, giả thuyết của mô hình điển hình đã chiếm ưu thế hơn, tiếp tục cho rằng hầu hết cpDNA có dạng vòng và phần lớn nhân đôi thông qua cơ chế thòng lọng D.

Thông tin di truyền và sự tổng hợp protein

Thông thường, bộ gen lục lạp chứa khoảng 100 gen[22][44] mã hóa cho nhiều cấu trúc đa dạng, trong đó phần lớn liên quan đến sự sinh tổng hợp protein và quá trình quang hợp. Tương tự tế bào nhân sơ, DNA lục lạp cũng tổ chức các gen của nó thành các operon.[22] Điều thú vị là không giống như các phân tử DNA tế bào nhân sơ, DNA lục lạp có chứa các intron (DNA ty thể (mtDNA) ở thực vật cũng vậy, nhưng ở người thì lại không).[62]

Thông tin di truyền của bộ gen lục lạp trong các loài thực vật đất liền gần như tương tự nhau.[45]

Quá trình thu gọn bộ gen lục lạp và sự chuyển gen

Theo thời gian, nhiều thành tố của hệ gen lục lạp đã chuyển đến hệ gen nhân tế bào chủ,[43][44][63] đây được gọi là quá trình chuyển gen nội cộng sinh. Kết quả là bộ gen lục lạp bị thu gọn cao độ, nhỏ hơn nhiều so với vi khuẩn lam sống tự do. Lục lạp có thể chứa 60–100 gen, trong khi vi khuẩn lam thường chứa nhiều hơn 1500 gen trong bộ gen của chúng.[64] Gần đây, một loại lạp thể không có hệ gen đã được tìm thấy, chứng tỏ lục lạp có thể mất luôn hệ gen của nó trong quá trình chuyển gen nội cộng sinh.[65]

Chuyển gen nội cộng sinh có ý nghĩa giúp chúng ta hiểu hơn về hiện tượng biến mất lục lạp ở nhiều dòng chromalveolate. Ngay cả khi lục lạp cuối cùng mất đi, các gen mà nó đã chuyển cho các tế bào chủ trước đó có thể cung cấp những bằng chứng về sự tồn tại các lục lạp đã mất. Ví dụ, dù trong tảo cát (một heterokontophyte) hiện đang có một lục lạp nguồn gốc tảo đỏ, nhưng sự hiện diện của nhiều gen tảo lục trong nhân tế bào của chúng đã cung cấp chứng cứ cho thấy tổ tiên tảo cát (có thể cũng là tổ tiên của tất cả các loài chromalveolate) có lục lạp nguồn gốc tảo lục ở một số giai đoạn tiến hóa, và sau cùng thay bằng loại lục lạp nguồn gốc tảo đỏ.[35]

Ở thực vật đất liền, một hàm lượng khoảng 11–14% DNA trong nhân tế bào có thể có nguồn gốc từ lục lạp,[42] riêng cải Arabidopsis lên đến 18%, tương ứng với khoảng 4 500 gen mã hóa protein.[66] Đã có một vài quá trình chuyển gen gần đây từ DNA lục lạp đến hệ gen nhân tế bào thực vật đất liền.[44]

Xấp xỉ 3000 protein tìm thấy trong lục lạp, khoảng 95% mã hóa bởi các gen trong nhân. Nhiều phức hệ protein cấu tạo từ các tiểu đơn vị được tổng hợp từ cả hai hệ gen lục lạp và nhân tế bào. Vì vậy, lục lạp lẫn nhân phải cùng phối hợp với nhau để hoàn chỉnh quá trình sinh tổng hợp protein. Lục lạp hoạt động chủ yếu dưới sự kiểm soát của nhân tế bào, nhưng đôi khi nó có thể phát xuất những tín hiệu điều hòa biểu hiện các gen trong nhân, đây gọi là hiện tượng truyền tín hiệu ngược (retrograde signaling).[67]

Sinh tổng hợp protein

Xem thêm: Phiên mãdịch mã

Sinh tổng hợp protein trong lục lạp hoạt động với sự tham gia của hai loại enzyme RNA polymerase. Một mã hóa bởi DNA lục lạp, còn một có nguồn gốc từ nhân. Cả hai RNA polymerase này có thể nhận biết và liên hợp với nhiều loại vùng khởi đầu (hay vùng khởi động–promoter) trong bộ gen lục lạp.[68] Các ribosome lục lạp tương tự ribosome vi khuẩn.[69]

Sự hướng đích và nhập lại protein

Xem thêm: Dịch mã

Do có nhiều gen cpDNA chuyển vào nhân tế bào, nên nhiều protein từng dịch mã trong lục lạp hiện được tổng hợp ngay trong tế bào chất tế bào thực vật. Những protein này sẽ phải nhập trở lại lục lạp và kinh qua ít nhất hai lớp màng.[70]

Kì lạ thay, khoảng một nửa trong số các sản phẩm protein của gen chuyển đi (transferred gene) lại không định hướng trở về lục lạp. Phần nhiều chuyển thành dạng thích nghi linh hoạt (exaptation), tham gia vào các chức năng mới như phân bào, định tuyến protein hay cả khả năng kháng bệnh. Một vài gen lục lạp tìm thấy nơi cư ngụ mới ở hệ gen ty thể–phần lớn đã trở thành các gen giả (pseudogene) không mang chức năng, mặc dù một ít gen tRNA vẫn còn hoạt động.[64] Một số sản phẩm protein của DNA lục lạp chuyển đi tham gia vào lộ trình chế tiết[64] (secretory pathway: một chuỗi những hoạt động dẫn đến kết quả cuối cùng là bài tiết protein ra ngoài tế bào). Cần lưu ý rằng nhiều lục lạp cấp hai có lớp màng ngoài cùng nguồn gốc từ màng tế bào chủ mà nó nội cộng sinh, và theo quan điểm tô pô học về không gian bên ngoài tế bào (lúc này không gian bên ngoài chứa chất nền ngoại bào của tế bào chủ "thống nhất" với không gian bên ngoài lớp màng ngoài cùng của lục lạp cấp hai hay chính xác là tế bào chất chứa bào tương của chính tế bào đó, bởi vì cả hai không gian này đều có cùng đặc tính "nằm ngoài" lớp màng tế bào chủ), vì vậy muốn đến được lục lạp từ bào tương, những sản phẩm protein phải băng qua lớp màng tế bào, giống như vừa mới hướng đích tới chất nền ngoại bào. Trong trường hợp thú vị này, protein hướng đích lục lạp thực ra đang "chu du" xuyên suốt lộ trình chế tiết (dù không thực sự bài tiết ra "ngoài").[27]

Trong các tế bào chứa lục lạp sơ cấp thuở ban sơ thực tế luôn có sẵn ty thể (và peroxisome, và lớp màng tế bào phục vụ lộ trình chế tiết), do đó những thế hệ tế bào mới sau này đã phát triển một hệ thống hướng đích protein độc nhất để tránh việc các protein lục lạp gửi nhầm đến các bào quan khác, cũng như nhận nhầm những protein không của lục lạp.[70]

Hai đầu của một polypeptide, một gọi là đầu N hay đầu tận cùng amino, và một đầu khác gọi là đầu C hay đầu tận cùng cacboxyl.[71] Phân tử polypeptide này chứa bốn amino axit liên kết với nhau. Bên trái là đầu N, với nhóm amino (H2N) màu lục. Bên phải là đầu C, với nhóm cacboxyl (COOH) màu lam.
Hai đầu của một polypeptide, một gọi là đầu N hay đầu tận cùng amino, và một đầu khác gọi là đầu C hay đầu tận cùng cacboxyl.[71] Phân tử polypeptide này chứa bốn amino axit liên kết với nhau. Bên trái là đầu N, với nhóm amino (H2N) màu lục. Bên phải là đầu C, với nhóm cacboxyl (COOH) màu lam.

Phần lớn, không hẳn tất cả trường hợp, các protein lục lạp mã hóa từ nhân đều bổ sung một peptide tín hiệu vào đầu N của tiền protein (protein sơ khai) trong quá trình dịch mã. Đôi khi, những trình tự vận chuyển cũng được tìm thấy tại đầu C,[72] hay có thể đóng một vai trò nào đó trong chức năng protein.[70]

Protein vận chuyển và kênh xuyên màng

Sau khi một chuỗi polypeptide lục lạp tổng hợp tại ribosome trong bào tương, một loại enzyme đặc hiệu sẽ tiến hành phosphoryl hóa cấu trúc phân tử để trở thành protein lục lạp,[73] tức là bổ sung một nhóm phosphate vào nhiều (không phải tất cả) trình tự vận chuyển của chúng.[70] Quá trình phosphoryl hóa giúp nhiều protein khác nhau kết nối với đoạn polypeptide, giúp nó đạt trạng thái gấp xoắn từ sớm.[70] Điều này quan trọng bởi vì nó ngăn chặn protein lục lạp tự hoạch định dạng hoạt động của chúng và thực hiện chức năng lục lạp trong một khu vực không đúng–bào tương tế bào.[74][75] Đồng thời, những chuỗi polypepide này cũng phải giữ hình thù ở mức phù hợp để lục lạp có thể nhận biết.[74] Những protein kết nối cũng sẽ giúp các đoạn polypeptide hướng đích nhập lại lục lạp.[70]

Lúc này, những protein lục lạp muốn vào được chất nền stroma phải kinh qua hai phức hệ protein xuyên màng, gồm: translocon màng lục lạp ngoài hay phức hệ TOC, viết tắt từ: translocon on the outer chloroplast membrane và translocon màng lục lạp trong hay phức hệ TIC, viết tắt từ: translocon on the inner chloroplast membrane.[70] Những chuỗi polypeptide thường băng qua hai phức hệ này cùng một lúc, nhưng các kênh xuyên màng trong vẫn tìm lấy và thông qua những tiền protein còn phiêu bạt trong xoang gian màng.[70]

Tài liệu tham khảo

WikiPedia: Lục_lạp http://sydney.edu.au/news/84.html?newsstoryid=5463 http://www.biocyclopedia.com/index/genetics/mutati... http://www.biologydiscussion.com/chloroplasts/chem... http://www.britannica.com/EBchecked/topic/113761 http://www.etymonline.com/index.php?term=chloropla... http://www.merriam-webster.com/dictionary/thylakoi... http://www.phschool.com/el_marketing.html http://users.rcn.com/jkimball.ma.ultranet/BiologyP... http://users.rcn.com/jkimball.ma.ultranet/BiologyP... http://users.rcn.com/jkimball.ma.ultranet/BiologyP...